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Abstract. Deformations of the two-dimensional centrally extended Galilei group are constructed.
The corresponding quantum Lie algebras are found.

1. Introduction

During the last few years, some authors have studied the problem of deformations of spacetime
symmetry groups [1–4]. It is well known that the notion of a quantum group is closely related
to that of Lie bialgebra and the Lie–Poisson group (see, for example, [5, 6]). In recent paper
[7] we classified all non-equivalent Lie–Poisson structures for the centrally extended two-
dimensional Galilei group. The central extension of Galilei algebra by the mass operator
admits 26 inequivalent Lie bialgebra structures and the corresponding Lie–Poisson structures.

In the present paper we quantize the structures obtained in [7]. As a result we obtain Hopf
algebras which provide quantum deformations of the centrally extended Galilei group. We
also find (by duality relations; see also [5, 8]) the corresponding quantum Lie algebras.

2. Deformations of the two-dimensional centrally extended Galilei group

The classical centrally extended Galilei group is defined as a set of elements

g = (m, τ, v, a) (1)

whereτ is time translation,a andv are space translation and Galilean boost, respectively,
subject to the following multiplication law:

g′g = (m′ +m− 1
2v
′2τ − av′, τ ′ + τ, v′ + v, a′ + a + τv′

)
. (2)

The multiplication rule defines coproducts ofm, v, τ anda:

4(m) = m⊗ I + I ⊗m− 1
2v

2⊗ τ − v ⊗ a
4(τ ) = τ ⊗ I + I ⊗ τ
4(a) = a ⊗ I + I ⊗ a + v ⊗ τ
4(v) = v ⊗ I + I ⊗ v.

(3)
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The antipode and counit can be also read off from equation (2):

S(m) = −m + 1
2v

2τ − av
S(τ) = −τ
S(a) = −a + vτ

S(v) = −v

(4)

ε(m) = 0 ε(τ ) = 0 ε(a) = 0 ε(v) = 0. (5)

The Galilei group is a real Lie group. The reality condition can be described by introducing
the following∗-structure:

m∗ = m τ ∗ = τ a∗ = a v∗ = v. (6)

The starting point to obtain the two-dimensional quantum Galilei group is the Lie–Poisson
structures on it. In [7] we have found all relevant Poisson structures.

In order to obtain the corresponding quantum group we make a replacement

{ , } = 1

iκ
[ , ]. (7)

Whereκ is an arbitrary parameter. The quantization procedure applied to the Lie–Poisson
structures classified in [7] yields the non-commutative structures listed in table 1.

For all the above cases we have

[v, τ ] = 0. (8)

We have checked that the commutators listed above satisfy the Jacobi identities. We have
also verified that equations (3)–(6), together with table 1 and (8) define∗-Hopf algebras which
provide the deformations of the two-dimensional centrally extended Galilei group.

3. The quantum Lie algebra and coalgebra

In this section we find all quantum Lie algebras corresponding to the quantum Galilei groups
defined in section 2. To this end we use the Hopf algebra duality rules. On the classical level
the generators of the Lie algebra of the Galilei group can be defined by the following global
parametrization of the group element:

g = eimMe−iτHeiaPeivK. (9)

Here we adopt this definition as well as the classical duality relation

〈ϕ,X〉 = −i
d

dt
ϕ
(
eitX

)|t=0. (10)

The group algebra is generated by the set of elements of the form

ϕαβγσ = mατβaγ vσ (11)

whereα, β, γ, σ > 1. By applying the classical duality rules we obtain

〈M,mατβaγ vσ 〉 = −iδ1αδ0βδ0γ δ0σ

〈H,mατβaγ vσ 〉 = iδ0αδ1βδ0γ δ0σ

〈P,mατβaγ vσ 〉 = −iδ0αδ0βδ1γ δ0σ

〈K,mατβaγ vσ 〉 = −iδ0αδ0βδ0γ δ1σ .

(12)
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Table 1.

[ v, a] [ v,m] [τ , a] [ τ ,m] [ a,m]

1 i
1

χ1
v i

1

χ1
a + i

1

χ2
v

1

χ1
= v0

2τ0

κ
,

1

χ2
= v0

2τ0
2

κ

2 i
1

χ1
v i

1

χ2
v −1

2
i

1

χ2
v2 i

1

χ1
a − 1

6
i

1

χ2
v3 1

χ1
= v0

2τ0

κ
,

1

χ2
= τ0

2

κ

3 i
1

χ1
v

1

2
i

1

χ1
v2 − i

1

χ2
τ

1

χ1
= v0τ0

2

κ
,

1

χ2
= v0

3τ0

κ

4 i
1

χ1
v −1

2
i

1

χ1
v2 i

1

χ2
v i

1

χ3
v − i

1

χ1
m +

1

2
i

1

χ2
v2 1

χ1
= v0τ0

κ
,

1

χ2
= v0τ0

2

κ

1

χ3
= εv0

2τ0
2

κ

5 i
1

χ1
v −1

2
i

1

χ1
v2 −i

1

χ2
τ − 1

6
i

1

χ1
v3 1

χ1
= τ0

2

κ
,

1

χ2
= v0

3τ0

κ

6 −i
1

χ1
τ −i

1

χ2
τ − i

1

χ1
a

1

χ1
= v0

2τ0

κ
,

1

χ2
= v0

3τ0

κ

7 i
1

χ1
v −i

1

χ2
τ i

(
1

χ1
− 1

χ2

)
a

1

χ1
= v0

2τ0

κ
,

1

χ2
= εv0

2τ0

κ

8 i
1

χ1
v i

1

χ1
τ + i

1

χ2
v 2i

1

χ1
a +

1

2
i

1

χ2
v2 1

χ1
= v0

2τ0

κ
,

1

χ2
= v0τ0

2

κ

9 −i
1

χ1
τ −i

1

χ2
τ −i

1

χ2
a − 1

2
i

1

χ1
τ2 + i

1

χ3
v

1

χ1
= v0

3

κ
,

1

χ3
= v0

2τ0
2

κ

1

χ2
= εv0

2τ0

κ

10 −i
1

χ1
τ −i

1

χ2
τ + i

1

χ3
v −i

1

χ2
a − 1

2
i

1

χ1
τ2 +

1

2
i

1

χ3
v2 1

χ1
= v0

3

κ
,

1

χ3
= v0τ0

2

κ

1

χ2
= εv0

2τ0

κ

11 −i
1

χ
τ i

1

χ
a −i

1

χ
m

1

χ
= v0τ0

κ

In order to define dual algebra structures we use the duality relations

〈ϕ,XY 〉 = 〈4ϕ,X ⊗ Y 〉
〈ϕψ,X〉 = 〈ϕ ⊗ ψ,4(X)〉.

(13)

The∗-structure on the dual Hopf algebra can be defined by the formula

〈X∗, ϕ〉 = 〈X, S−1
(
ϕ∗
)〉 (14)

provided the following relation holds:

S−1 (X) = [S
(
X∗
)
]∗. (15)

In order to take care of all elements of the form (11), let us introduce a generating function
depending on four real parametersµ, ν, %, κ (see, however, the appendix):

ϕ (µ, ν, ρ, κ) = eµmeντeρaeκv. (16)
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Then we have

〈M, eµmeντeρaeκv〉 = −iµ

〈H, eµmeντeρaeκv〉 = iν

〈P, eµmeντeρaeκv〉 = −i%

〈K, eµmeντeρaeκv〉 = −iκ.

(17)

The duality rules (13) and long and tedious calculations lead us to the following structure
of quantum Lie algebras:

1.

[K,H ] = iP

[K,P ] = 1
2iχ1

(
1− e−2M/χ1

)
1M = I ⊗M +M ⊗ I
1H = I ⊗H +H ⊗ I
1P = I ⊗ P + P ⊗ e−M/χ1

1K = I ⊗K +K ⊗ e−M/χ1 − 1

χ2
P ⊗Me−M/χ1

S(M) = −M
S(H) = −H
S(P ) = −PeM/χ1

S(K) = −KeM/χ1 − 1

χ2
PMeM/χ1.

(18)

2.

[K,H ] = iP

[K,P ] = 1
2iχ1

(
1− e−2M/χ1

)
1M = I ⊗M +M ⊗ I
1H = I ⊗H +H ⊗ I
1P = I ⊗ P + P ⊗ e−M/χ1

1K = I ⊗K +K ⊗ e−M/χ1 − 1

χ2
P ⊗He−M/χ1

S(M) = −M
S(H) = −H
S(P ) = −PeM/χ1

S(K) = −KeM/χ1 − 1

χ2
PHeM/χ1.

(19)
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3.

[K,P ] = iM

[K,H ] = iP − 1
2i

1

χ2
M2

1M = I ⊗M +M ⊗ I
1H = I ⊗H +H ⊗ I − 1

χ2
P ⊗M

1P = I ⊗ P + P ⊗ I
1K = I ⊗K +K ⊗ I +

1

χ1
H ⊗M − 1

2

1

χ1

1

χ2
P ⊗M2

S(M) = −M
S(H) = −H − 1

χ2
PM

S(P ) = −P
S(K) = −K +

1

χ1
HM +

1

2

1

χ1

1

χ2
PM2.

(20)

4.

[K,M] = 1
2i

1

χ1
M2

[K,P ] = iM

[K,H ] = −iχ1
(
1− eP/χ1

)
1M = eP/χ1 ⊗M +M ⊗ I
1H = I ⊗H +H ⊗ I
1P = I ⊗ P + P ⊗ I
1K = eP/χ1 ⊗K +K ⊗ I +

1

χ2
HeP/χ1 ⊗M − 1

χ3
PeP/χ1 ⊗M

S(M) = −Me−P/χ1

S(H) = −H
S(P ) = −P
S(K) = −Ke−P/χ1 +

1

χ2
HMe−P/χ1 − 1

χ3
PMe−P/χ1.

(21)

5.

[K,P ] = iM

[K,H ] = iP − 1
2i

1

χ2
M2

1M = I ⊗M +M ⊗ I

1H = I ⊗H +H ⊗ I − 1

χ2
P ⊗M
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1P = I ⊗ P + P ⊗ I
1K = I ⊗K +K ⊗ I +

1

2

1

χ1

1

χ2
P 2⊗M − 1

χ1
P ⊗H (22)

S(M) = −M

S(H) = −H − 1

χ2
PM

S(P ) = −P

S(K) = −K − 1

χ1
PM − 1

2

1

χ1

1

χ2
MP 2.

6.

[K,H ] = iP − i
χ1

χ2
MeM/χ1 + i

χ2
1

χ2

(
eM/χ1 − 1

)
[K,P ] = −iχ1

(
eM/χ1 − 1

)
1M = I ⊗M +M ⊗ I
1H = I ⊗H +H ⊗ eM/χ1 − 1

χ2
P ⊗MeM/χ1

1P = I ⊗ P + P ⊗ eM/χ1

1K = I ⊗K +K ⊗ I
S(M) = −M
S(H) = −He−M/χ1 − 1

χ2
PMe−M/χ1

S(P ) = −Pe−M/χ1

S(K) = −K.

(23)

7.

[K,H ] = iP

[K,P ] = − i

(2/χ1− 1/χ2)

(
1− e−(2/χ1−1/χ2)M

)
1M = I ⊗M +M ⊗ I
1H = I ⊗H +H ⊗ eM/χ2

1P = I ⊗ P + P ⊗ e(1/χ2−1/χ1)M

1K = I ⊗K +K ⊗ e−M/χ1

S(M) = −M
S(H) = −He−M/χ2

S(P ) = −Pe(1/χ1−1/χ2)M

S(K) = −KeM/χ1.

(24)

8.

[K,H ] = iP
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[K,P ] = 1
3iχ1

(
1− e−3M/χ1

)
1M = I ⊗M +M ⊗ I
1H = I ⊗H +H ⊗ e−M/χ1

1P = I ⊗ P + P ⊗ e−2M/χ1

1K = I ⊗K +K ⊗ e−M/χ1 +
1

χ2
H ⊗Me−M/χ1 (25)

S(M) = −M
S(H) = −HeM/χ1

S(P ) = −Pe2M/χ1

S(K) = −KeM/χ1 +
1

χ2
HMeM/χ1.

9.

[K,H ] = iP + i
χ2

2

χ1χ3
MeM/χ2 − 1

2
i
χ3

2

χ1χ3

(
e2M/χ2 − 1

)
[K,P ] = iχ2

(
eM/χ2 − 1

)
[H,P ] = −1

2
i
χ2

2

χ1

(
e2M/χ2 − 1

)
+ i
χ2

2

χ1

(
eM/χ2 − 1

)
1M = I ⊗M +M ⊗ I

1H = I ⊗H +H ⊗ eM/χ2 − χ2

χ1
K ⊗ eM/χ2 +

χ2

χ1
K ⊗ I

+
χ2

χ1χ3
P ⊗MeM/χ2 +

χ2
2

χ1χ3
P ⊗ I − χ2

2

χ1χ3
P ⊗ eM/χ2 (26)

1P = I ⊗ P + P ⊗ eM/χ2

1K = I ⊗K +K ⊗ I +
χ2

χ3
P ⊗ I − χ2

χ3
P ⊗ eM/χ2

S(M) = −M

S(H) = −He−M/χ2 − χ2

χ1
K +

χ2

χ1
Ke−M/χ2 +

χ2
2

χ1χ3
Pe−M/χ2 − χ2

2

χ1χ3
P +

χ2

χ1χ3
PMe−M/χ2

S(P ) = −Pe−M/χ2

S(K) = −K +
χ2

χ3
Pe−M/χ2 − χ2

χ3
P.
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10.

[K,H ] = iP

[K,P ] =
i

(
− 1

2(1/χ2) + 1
2

√
1/χ2

2 − 4(1/χ1)/χ3

)
√

1/χ2
2 − 4(1/χ1)/χ3

(
3
2(1/χ2) + 1

2

√
1/χ2

2 − 4(1/χ1)/χ3

)

×
(

e
(

3
2 (1/χ2)+ 1

2

√
1/χ2

2−4(1/χ1)/χ3

)
M − 1

)

+
i

(
1
2(1/χ2) + 1

2

√
1/χ2

2 − 4(1/χ1)/χ3

)
√

1/χ2
2 − 4(1/χ1)/χ3

(
3
2(1/χ2)− 1

2

√
1/χ2

2 − 4(1/χ1)/χ3

)

×
(

e
(

3
2 (1/χ2)− 1

2

√
1/χ2

2−4(1/χ1)/χ3

)
M − 1

)

[H,P ] = i

χ1

√
1/χ2

2 − 4(1/χ1)/χ3

(
3
2(1/χ2)− 1

2

√
1/χ2

2 − 4(1/χ1)/χ3

)

×
(

e
(

3
2 (1/χ2)− 1

2

√
1/χ2

2−4(1/χ1)/χ3

)
M − 1

)

− i

χ1

√
1/χ2

2 − 4(1/χ1)/χ3

(
3
2(1/χ2) + 1

2

√
1/χ2

2 − 4(1/χ1)/χ3

)

×
(

e
(

3
2 (1/χ2)+ 1

2

√
1/χ2

2−4(1/χ1)/χ3

)
M − 1

)

1M = I ⊗M +M ⊗ I

1H = I ⊗H +H ⊗ e
1
2M/χ2

[
cosh

(
−1

2

√
1

χ2
2

− 4
1

χ1

1

χ3
M

)

− 1

χ2

√
1/χ2

2 − 4(1/χ1)/χ3

sinh

(
−1

2

√
1

χ2
2

− 4
1

χ1

1

χ3
M

)

+2
1

χ1

√
1/χ2

2 − 4(1/χ1)/χ3

K ⊗ e
1
2M/χ2 sinh

(
−1

2

√
1

χ2
2

− 4
1

χ1

1

χ3
M

)

1P = I ⊗ P + P ⊗ eM/χ2



2D centrally extended quantum Galilei groups 1949

1K = I ⊗K +K ⊗ e
1
2M/χ2

[
cosh

(
−1

2

√
1

χ2
2

− 4
1

χ1

1

χ3
M

)
(27)

+
1

χ2

√
1/χ2

2 − 4(1/χ1)/χ3

sinh

(
−1

2

√
1

χ2
2

− 4
1

χ1

1

χ3
M

)
−2

1

χ3

√
1/χ2

2 − 4(1/χ1)/χ3

H ⊗ e
1
2M/χ2 sinh

(
−1

2

√
1

χ2
2

− 4
1

χ1

1

χ3
M

)

S(M) = −M

S(H) = −He−
1
2M/χ2

[
cosh

(
1

2

√
1

χ2
2

− 4
1

χ1

1

χ3
M

)

− 1

χ2

√
1/χ2

2 − 4(1/χ1)/χ3

sinh

(
1

2

√
1

χ2
2

− 4
1

χ1

1

χ3
M

)]

−2
1

χ1

√
1/χ2

2 − 4(1/χ1)/χ3

Ke−
1
2M/χ2 sinh

(
1

2

√
1

χ2
2

− 4
1

χ1

1

χ3
M

)

S(P ) = −Pe−M/χ2

S(K) = −Ke−
1
2M/χ2

[
cosh

(
1

2

√
1

χ2
2

− 4
1

χ1

1

χ3
M

)

+
1

χ2

√
1/χ2

2 − 4(1/χ1)/χ3

sinh

(
1

2

√
1

χ2
2

− 4
1

χ1

1

χ3
M

)
+2

1

χ3

√
1/χ2

2 − 4(1/χ1)/χ3

He−
1
2M/χ2 sinh

(
1

2

√
1

χ2
2

− 4
1

χ1

1

χ3
M

)
.

11.

[K,M] = 1

2
i
1

χ
M2

[K,P ] = iM

[K,H ] = iχ
(
1− e−P/χ

)− i
1

χ
MH

1M = M ⊗ I +
eP/χ ⊗M

1− 1
2(1/χ

2)HeP/χ ⊗M

1H = e−P/χ ⊗H +H ⊗ I − 1

χ2
H ⊗MH +

1

4

1

χ4
H 2eP/χ ⊗M2H

−1

2

1

χ2
H 2eP/χ ⊗M (28)
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1P = I ⊗ P + P ⊗ I − 2χ ln

(
1− 1

2

1

χ2
HeP/χ ⊗M

)
1K = I ⊗K +K ⊗ I

S(M) = −Me−P/χ

1− 1
2(1/χ

2)MH

S(H) = −HeP/χ +
1

2

1

χ2
MH 2eP/χ

S(P ) = −P + 2χ ln

(
1

1− 1
2(1/χ

2)HM

)
S(K) = −K.
The counits for all cases take the form

ε(M) = 0 ε(H) = 0 ε(P ) = 0 ε(K) = 0. (29)

4. Conclusions

We obtained a number of, in general multiparameter, deformations of the two-dimensional
centrally extended Galilei group. They are described in table 1 together with equations (3)–(6)
and (8). The corresponding quantum Lie algebras have also been found. They are listed in
equations (18)–(29).

Recently, a paper has appeared by Ballesteroset al [9]. These authors have also studied
the deformations of the Galilei algebra. All cases which have been obtained by Ballesteros
et al are contained in our list. In two cases this equivalence becomes explicit only after some
redefinition of generators.

The quantum deformations of Galilei group/algebra obtained above can serve to study
dynamical models (classical as well as quantum ones) on non-commutative spacetime. It
seems to us that they provide a better starting point to understanding the role of the non-
commutativity of spacetime symmetries than their relativistic counterparts. This is because we
can get rid of some additional difficulties related to quantum relativity (such as, for example, the
impossibility of constructing non-trivial quantum dynamics with a fixed number of particles)
and concentrate on the role of non-commutativity. These problems will be addressed in
subsequent publications.
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Appendix

In this appendix, in order to illustrate the procedures used, we sketch the proof of equations (21).
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This case is somehow special because it is more convenient to choose the generating
function as follows (instead of equation (16)):

ϕ = eµmeντeκveρa.

In order to determine coalgebra sector we use the duality relation

〈ϕψ,X〉 = 〈ϕ ⊗ ψ,4 (X)〉.
To this end, we calculate

eµ
′meν

′τeκ
′veρ

′aeµmeντeκveρa = e(µ
′+µe−i%′/χ1)me(ν

′+ν)τ

× exp

(
κe−i%′/χ1 + κ ′

1
1
2i(1/χ1)µe−i%′/χ1v + 1

)
v

+
(
2(χ1/χ2)ν

′ + 2(χ1/χ3)ρ
′) ln

(
1
2i(1/χ1)vµe−iρ ′/χ1 + 1

)
×eO(v2,...)e(ρ

′+ρ)a

where O
(
v2, . . .

)
means a function depending onv2 and higher powers ofv.

Taking the first power ofv in exponentials we obtain the following result:

ϕψ = e(µ
′+µe−i%′/χ1)me(ν

′+ν)τ

×e(κe−i%′/χ1+κ ′+i(1/χ2)µν
′e−i%′/χ1+i(1/χ3)µρ

′e−i%′/χ1)veO(v2,...)e(ρ
′+ρ)a.

Therefore, we have

〈1M, eµ′meν
′τeκ

′veρ
′a ⊗ eµmeντeκveρa〉 = 〈M, eµ′meν

′τeκ
′veρ

′aeµmeντeκveρa〉
= −i

(
µ′ +µe−i%′/χ1

)
.

Using this and the corresponding formulae forH,P andK we arrive at the coalgebra
described by equation (21).

Now using the duality relation〈ϕ,XY 〉 = 〈4ϕ,X ⊗ Y 〉 we can determine the algebra
sector. We have

1ϕ = eµ(m
′+m− 1

2v
′2τ−av′)eν(τ

′+τ)eκ(v
′+v)eρ(a

′+a+τv′).

In order to deal with the above expression we first decompose

eµ(m
′+m− 1

2v
′2τ−av′).

To this end let

f (µ) = e−µm
′
eµ(m

′+m− 1
2v
′2τ−av′).

Then

1ϕ = eµm
′
f eν(τ

′+τ)eκ(v
′+v)eρ(a

′+a+τv′).

The functionf (µ) obeysf (0) = 1, and

ḟ = df

dµ
=
(
m− 1

2

τv′2(
1 + 1

2i(1/χ1)µv′
)2 − av′

1 + 1
2i(1/χ1)µv′

)
f.
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The above equation cannot be solved in a standard way due to the fact that the terms appearing
on the right-hand side do not commute. Therefore, we pass to the ‘interaction picture’ by
letting

f = emX(v
′,µ)h.

Then

ḟ = mẊemXh + emXḣ

and we selectX in such a way that the terms containingm cancel. It can be checked thatX
should be of the form

X(v′, µ) = µ
(

1 +
1

2
i

1

χ1
µv′

)
.

We now have

eµ(m
′+m− 1

2v
′2τ−av′) = eµm

′
eµm(1+1

2 iµv′/χ1)h.

Our next aim is to calculateh. We do this in the same way by writing out a relevant
differential equation

ḣ = −
(

av′

1 + 1
2i(1/χ1)µv′

+ γ
(
τ, v, v′, µ

))
h

and substituting

h = eλ(v
′,µ)a

in order to deal with non-commutativity of the terms on the right-hand side.
Step by step we arrive at the following result:

eµ(m
′+m− 1

2v
′2τ−av′) = eµm

′
eµm(1+1

2 iµv′/χ1)e2iχ1 ln(1+1
2 iµv′/χ1)a

× exp

[
−
∫ µ

0
γ

(
v(

1 + 1
2iµv′/χ1

)2 , v′, τ, µ
)

dµ

]
where the functionγ is of third degree inv, v′.

Finally,1ϕ can be rewritten as

1ϕ = eµm
′
eντ

′
eµme

1
2 i(1/χ1)µ

2v′meντeκv
′
eO(v′2,v,τ )eκveiµv′/χ1 e−µv

′ae%ae−iχ1(1−e−i%/χ1)v′τe%a
′
.

Using the above formula, we may calculate

〈KM, eµmeντeκveρa〉 = 〈K ⊗M,1 (eµmeντeκveρa
)〉 = (−i) (−i)

(
1

2
i

1

χ1
µ2

)
〈MK, eµmeντeκveρa〉 = 〈M ⊗K,1 (eµmeντeκveρa

)〉 = 0.

Therefore,

〈[K,M], eµmeντeκveρa〉 = −1

2
i

1

χ1
µ2.

Other commutators are calculated in a similar way.
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